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The stability of the periodic solution of the system of equations

dz

PIRRACID)] (0.1)
with discontinuous periodic [ f(z, t + 7) = f(qz, t)] right-hand sides [ ;
and f are n-dimensional vector columns with coordinates z, and f.(i = 1,

. n)] has been investigated by Aizerman and Gantmakher [1]. Establish-

ing what should be understood by the linear approximation in this "dis-
continuous" case, the authors have proved theorems analogous to those of
Liapunov.

The present paper deals with the stability of any solution (periodic
or nonperiodic) of system (0.1) with discontinuous nonperiodic right-hand
sides., For this, use is made of the condition for the discontinuities of
the solution of the linear approximation introduced in paper [ 1] for
periodic systems. Two criteria of stability are established which are
generalizations of the corresponding theorems of Persidskii [2] and
Perron [ 3], proved by these authors for continuous systems,

1. Conditions imposed on the right-hand sides of the differential
equations. Consider the system of differential equations

dz )
P -i(z, 1) (1.1)

where the real vector function f(z, t) is given in the (n + 1)-dimensional
space z, t inside a curvilinear cylinder C, the axis of which is the
integral curve :z = zo(t) of system (1.1). Let the infinite sequence of
surfaces®” F&(z, t) = 0 dissect the cylinder C into regions H_, intersect-
ing the curve z = zo(t) for t = t, at points Mh. Then there exists a

positive constant T such that thr 1= tg 2 T> 0,
* Here and in what follows the index a assumes the values 1, 2, ..., o.
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Solution of differential equations with discontinuous right-hand sides 851

The planes t = ta dissect the regions Hﬁ into angular regions, bounded
by these planes and the corresponding surfaces F& = 0, and into central
regions, containing the segments of the integral curve z = zo(t). Con-
cerning the function f and the surfaces F& = 0 the following assumptions

are made:

1. The function f is continuous in every region Hh (including the
boundaries F& = 0 and F&4_1 = 0), while passing through the surface F&::O
it can experience only discontinuities of the first kind, the magnitudes

f& of which at points M& are bounded in their totality.

2. Conditions are fulfilled which guarantee in every region Hb unique-
ness of the solution of system (1.1) for the given initial conditions and
its continuous dependence on these conditions. Also satisfied are the
conditions for the continuation of the integral curves without any
obstacles from any region Hb into the adjacent region Ha+~1'
3. In every central region

flzoty =flz°(0), 8] P ) [z--22()] ~ R (z0) (1.2)

holds, where P(t) is continuous in every interval* ty € t K toe 1 while
the matrix R(z, t), which is bounded for t > 0 and represents the non-
linear remainder, satisfying the inequality

JR(z, )| <afz—2°(1)] (t -0, a = const) (1.3)

Here and in what follows | z| = (zl2 4o # 2"2)1/2.

4, The limit relation
[ =2 @)t =5, mf(zt)—f[°(t), t]l~—%, for (s,8)— M,

which holds in any angular region below and above the plane t = tyr is
fulfilled uniformly with respect to a.

5. The surfaces f& = 0 are continuous and at points Mh they are smooth,
On one side of the surface F& = 0 we have F& > 0 while on the other side
ﬁh < 0 holds. Inside the cylinder C the surfaces F, = 0 do not intersect
each other.

6. Along the integral curve :z = zo(t) we have

dF, )—- (dF,/ /l[)Ma+
Ry =& — ST .
( de | 7 0, (dF, ] {[[)MI- =I>0 (I'=const) (1.4)

* Speaking about intervals t, St t

the interval oL tgt

a+ 1+ ¥e shall have in mind also
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Here

dF, ‘dF, 6Fa)
W:( oz f+\at Jz=2°(t)

where dia/az denotes the vector gradient (row) and the indices + and -
refer correspondingly to the values for t = ta + 0 and t = ta — 0.

According to (1.4) the equations for the parts of the surface dh(z,t)s
i&(zo + x, t) = 0, situated below and above the plane t = ta can be
written correspondingly in the form (x = z ~— zo(t))

ty—t=hgz+0(]|z) t—ty-=hite+0(|z)) (1.5)

where the vector row is given by

bt _ aF / dFa):t
@ 9z dt My
7. The quahtities~ha_ are bounded in their totality. The ratio in

(1.5)

0(z1)

2] 0 for|z|—C (1.6)

is satisfied uniformly with respect to a.

2. Linear approximation and its transformation. Let us define the
linear approximation of system (1.1) as the set of : (i) the system of
linear equations

— =P @)=z 2.1)

which is satisfied by the solution x = x(t) inside every interval t, <

t g ta+—1' and (ii) the conditions of discontinuities at t = t, of the
integral curves x = x(t), defined by the formulas
z,t =8, 1, (2.2)

where the matrix
Se = (Sa)ix 1™ (Sa)ir = djx + Eailax™

Bik is the Kronecker symbol, hak“ and fﬁi are the corresponding coordi-
nates of the vectors hd— and fﬁ. The matrices %a are bounded in their

totality.

For the proof of the criterion of stability according to the linear
approximation the following lemma will be needed.

Lemma., Por every system of linear approximation (2.1) + (2.2) it is
possible to construct a Liapunov transformation discontinuous at
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a z=L(t)y (2.3)

which transforms this system into a system the matrix of whose coeffi-
cients A(t) is continuous and bounded for t » 0 and the solutions of which
are continuous:

d
Y aon e .0

Proof. Let the values of L(t) and dL/dt for t = t, + 0 be given by
the formulas

Ly =E,  (dLjdt),~ =0 (B =3 i) (2.5)
Lyt =S, (dL/dt),* = P,*S, — S P,~ (2.6)

a
The relations (2.6) guarantee the continuity of the matrix A(t) and

of the solutions y = y(t) of the system (2.4) for t = ty.
For the proof of the Lemma it is sufficient to construct a matrix

L{(t) according to the given values (2.5) and (2.6) for t = t, 0 of this

matrix and its derivative in such a way that in every interval t £ tg

t there exist continuous matrices L'l(t) and dL/dt, bounded for t> 0

a+ 1 .
in the same way as L(t).

For the existence and boundedness for t > 0 of the matrix L~1(t) it
is sufficient that the matrix L(t) satisfies the relation

detL (2) >T >0 (¢ =0) (2.7

This condition is satisfied for t = t, + 0 by virtue of (1.4), since
from the structure of the matrix S, follows (see [1], p. 662) that

(dFg/dt)y
det L, = det S, = (g jay), =
holds.

The condition (2.7) is also satisfied for t = ty — 0, if we assume
that in (1.4) we have ['< 1.

Let us pass now to the determination of the values of the matrix L(t)
inside the intervals t, < t< tae 1 For this, consider the column s, of
the matrix Sa as a vector in an n-dimensional space and take a parallel-

epiped constructed at the origin of the coordinates on the vectors

* Except for the discontinuities at t = t, the properties of the matrix
L(t) are the same as in the classical case, i.e. in every interval
ta < t < tg,  there exist continuous matrices L™! and dL/dt, which

are bounded for t > 0 in the same way as L.
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Sqs aeen S, (as edges). Change continuously the coordinates of these
vectors, keeping their lengths constant, and increasing at the same time
the volume of the parallelepiped in such a way that for ¢ = thy =ty t
1/4(¢

a+ 1" ta) the parallelepiped becomes rectangular,
Take the current values of the coordinates L of the vectors s in
this transformation for the elements of the matrix L(t) = || I, ()| ,"
in the corresponding intervals t, <t thy Then for ¢, < tg tyy ¥e

have
n

2‘][ Lelr<<r?, detL(f) >T'>0, (Lk=1,...,n; 1<r<oo, r=const) (2.8)

i-=1

Keep for the current values of the coordinates of the vectors the
previous notations lik(t) and take them for the elements of the matrix
L(t). In addition carry out the following three transformations:

(1) In the intervals of time t . < ¢ ty, = t, + 1/2(t, , — t;), by
stretching the edges to the length r, convert the rectangular parallel-
epipeds into cubes;

(2) In the time intervals t,, < t < to3 = t, + 3/4( 4,4 ~ tg) turn

the cubes so that their edges become parallel to the coordinate axes;

(3) And, finally, during the time intervals ta3 Lt ti4 10 compress
the lengths of the edges to unit lengths. In this way the condition
L~! = F is satisfied.

In the above transformations we connected, by continuous arcs of curves
and segments of straight lines, pairs of points of the n-dimensional
space in such a way that the inequalities (2.8) always hold.

From the actual process of construction of these arcs and segments it
follows that they are of bounded lengths for all a. Since, in addition,
the time during which these arcs are described 1is greater than (1/4) T
> 0, then the description of these arcs can be carried out with velocities
the magnitudes of which are bounded by one and the same constant number
for all a. The motion along the arcs can be started and ended in every
interval with zero velocities.

In order that the matrix dL/dt assumes for t = ta + 0 the values given
by the formulas (2.6), replace the graphs of these functions lik = lih(t)
(i, k=1, ..., n) by the nearest smooth curves which coincide with the
initial curves for t = ¢, + 0 and in the intervals ty + /2 t g the 1
in such a way that the functions for which we kept the previous notations
zik(t)' but which represent the new curves, satisfy the equalities (2.6).
Since the magnitude of the determinant det L(t) is a continuous function

of its elements, and the matrices (dL/dt)a+ are bounded in their totality,
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then the new curves can be traced in such a way that the inequalities
[ ()<< 2r, det L (2) > 1/:1'>0 (k-4 ..., t U

are fulfilled and that at the same time the boundedness of the matrix
dL/dt for t » 0 is not violated. Hence the Lemma is proved.

Remark. Usually for the construction of the Liapunov transformation
the knowledge of the solutions of the corresponding system of differential
equations is necessary (see [4-61). In the case under consideration, how-
ever, for the construction of the transformation x = L(t)y, it is suffi-
cient to give only the matrices Sa and P(ta + 0),

3. Criteria of stability according to the linear approximation.
Theorem 1. Let the elements of the normalized (for t = t,) fundamental
- n _ -
matrix Hxik(t,to)[l1 (x;,(t, tg) = Sik) of the system of linear approxima
tion (2.1) + (2.2) satisfy for arbitrary t; > 0 and t > t, the relations

[, (¢, to) | < B exp [—B (t — to)] (ok=1,....n) (3.1)

where B and B are positive constants which do not depend on ty- Then the
solution z = zo(t) of the initial nonlinear system (1.1) is asymptotically
stable provided only that the constant a in the inequality (1.3) is
sufficiently small.

In order to prove the Theorem apply to the initial nonlinear system
(1.1), rewritten in terms of the variations x = z - zo(t). the transform-
ation (2.3). Then we obtain the system

dy dL
g =90, gy, )= L1 [f ="+ Ly, ) —f(z°, t)—'ﬁy] (3.2)

which has discontinuous solutions for ¢t = ty since for these values the
matrix L(t) is discontinuous. In the space y, t the surfaces Qa(y, t) =

Gh(Ly, t) = 0 and the planes t = to dissect the cylinder C into angular

and central regions in the same way as in the space z, t.

In terms of the variables y the system of linear approximation (2.1)+
(2.2) can be rewritten in the form (2.4). From the relations (3.1) and
the boundedness of the matrices L and L™ follows that the elements of
the normalized (at t = t;) fundamental matrix [[y, (¢, t)]|," of systenm

(2.4) satisfy for arbitrary ty 2 0 and t > ty the inequalities

[ Y5 (2 to) | < Byexp[—3 (£ — to)] (i k=1,...,n)

where 81 and 3 are positive constants which do not depend on t,. If these
last relations are satisfied, then, as it was proved by Malkin [5],'there
exist a positive definite quadratic form V(y, t) with continuous and
bounded coefficients which satisfies the relations
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av
—a;)Aer 71 = —|ul? (3.3)
hlylP<sV{y, )<b|yl® (£ > 0,0<b <1 <hy) (3.9)

Let us investigate the change of values of V(y, t) along the discon-
tinuous integral curves y = y(t) of the system (3.2).

1. In a central region. By virtue of (1.2), (1.3) and (3.2) we have
g )=AWy+E (1), R (y,1) =L R({Ly+2%1), K |<alyl

where a, = am, m> 0 and finite due to the boundedness of L and i, De-
noting by V’ the total derivative of V with respect to t, evaluatedtby
means of the equations (3.2) and the relations (3.3) and (3.4), we obtain

L 1 oV . 1 [22]
==l R <—7 T

where a, = o, sup|dV/dy| | y|™! for ¢ » 0. Since the coefficients of the
form V are bounded, then a, is a finite quantity. Supposing the constant
a in (1.3) to be so small that “zbz < bi' we obtain

v’ 1 a
LA (pz e _bli) (3.5)

From (3.5) follows that the values of V at instants ¢t amd t*(¢t* < t),
when the point of the integral curve is in one of the central regions,
satisfy the relation

V<V exp[—p2(t—t")] (3.6)

2. In an angular region. Applying the estimating scheme, analogous to
that used in paper [1], and taking into account the properties of the
form V and the conditions 4, 6 and 7 (Section 1), we obtain that the
values of V at instants t and t** when the point of the integral curve
is in one and the same angular region, satisfy for sufficiently small y
the inequality

VANV (N >1) (3.7)
where N does not depend on a.

Moreover, if the integral curve passes from the point ¥y ty on the
surface of discontinuity Qa = 0 to the point Ygr tq OP the plane t = ¢

a a’
then for sufficiently small y the double inequality
V(ya*i ta)
exp (—0) < W< exp 0 (3.8)

holds, where 0 is an arbitrarily small positive number.

Let it be given that ¢ > 0 and so small that for |y|%< ¢ the
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inequalities (3.6), (3.7), (3.8) are satisfied and the time At spent in
any angular region (inside the cylinder | y12 = €) is less than (1/2 p2)T
(u? — v?), where 0 < v < y. Then inside the cylinder |y|? = ¢ the planes

- . _ 3 .
t= t = 1/2(ta+1 + ta) do not intersect angular regions,

select § = € b /N, 6 < 1/2(u? ~ v®)T and the initial point (yy, t,* )
of the integral curve in such a way that bzlyol2 < 8. Then by virtue of

(3.4) we have

eb
Vi=Vi_ e <bhlyp)<s=pr

From the inequalities (3.6) and (3.7) follows that in the interval
t;*< t< t,* the rate of increase of the function V(y, t) does not exceed
N. Therefore, in the whole interval we have V(y, t) < ebl, and in con-
firmity with (3.4) the inequality | y|? < ¢ holds.

Using the inequalities (3.6) and (3.8) and the relations ty -

+1
ty > T, we obtain

Vo=V <Viexp [—w2 (T — At) 4 8] <Vjexp (—vT)

i.e. V2 < Vi < 8. Therefore, the arguments used above can be repeated
for the interval '2.‘< t g to‘, and so on.

Consequently, any integral curve of the nonlinear system (3.2), which
has started for t = t* inside the cylinder |y|?= 5/b,, will remain all
the time inside the cylinder | y|2 = ¢ and

Vo=V +<Viexp[— (@ —1)vT]

Therefore, in every interval :a°-< t < we have

t11+ 1
hi|yP<V<NV, << Nby|yo|Pexp[— (a —1)v2T
and y » 0 for t » o . Hence the theorem is proved.

Theorem 2. Let w(t) be an arbitrary vector function, bounded for t » 0

and piecewise continuous and with discontinuities only at t = ¢ : ot =

a “a
Eha%{'. Further let any solution of the system

dx

g7 Pz to (2) (3.9)
satisfying these equations inside every interval t, £ tg ta4-1 and ex-
periencing discontinuities at t = t, for which xa+ = sa’a— be bounded

for t > 0. Then the solution :z = zo(t) of the nonlinear system (1.1) is
asymptotically stable provided only that the constant a in inequality
(1.3) is sufficiently small.

In order to prove the theorem, apply to the system (3.9) the trans-
formation (2.3) and afterwards to the so obtained system the transform-
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ation of Perron [ 6] y = Liu (L is a continuous Liapunov matrix). Then
the system is finally reduced to the form

S G(Mude () (0 =L Te) (3.10)

where G(t) = |lg;,ll;" is a triangular matrix bounded and continuous for
t2> 0, i.e. g, (t) = 0 for k> i,

From the boundedness of all the solutions of (3.9) follows the bound-
edness of any solution of (3.10) for arbitrary continuous bounded w*(t)
(t > 0). According to Perron 3] this implies the boundedness of all 2n
functions

{ t t )
exp ggﬁ (t)dt, exp S gi; (1) d't] \ exp .——S gi; 1) dt]d‘r (i=1,..,n) (3.11)
{ fo t, {,

T

If, however, the functions (3.11) are bounded, then, as it was proved
by Malkin [ 7], there exists a positive definite function, admitting anm
infinitely small upper limit, the total time derivative of which by
virtue of the system

5 G(t)u (3.12)

is a negative definite function.

Then, according to a theorem of Fersidskii [ 2], the elements of the
normalized (at t = t,) fundamental matrix U(t, t;) = [lu;,(t, tp)][;" of
the system (3.12) satisfy for arbitrary ¢; > 0, t > ¢, the relations

[ gy (2, 20) | < Brexp[- -3 (1 — 1)) (i,k 3,...,n) (3.13)
where B1 and 3 are positive constants which do not depend on ty-

If X(t, t) = |lz;, (e, ¢, is the normalized (at t = t;) fundamental
matrix of the system (3.9) for w(t) = 0, then from (3.13) we obtain for
arbitrary t; > 0, t > t, the inequalities

o (Lto) [<<B exp—3(t— )] (L, k:=1,...,n)
where B and 3 are positive constants which do not depend on t,.

In this way, if the conditions of Theorem 2 are satisfied, also the
conditions of Theorem 1 hold, This proves Theorem 2,
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